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Abstract: In this paper, a prediction model for the tensile behaviour of ultra-high performance
fibre-reinforced concrete is proposed. It is based on integrating force contributions of all fibres
crossing the crack plane. Piecewise linear models for the force contributions depending on fibre
orientation and embedded length are fitted to force–slip curves obtained in single-fibre pull-out tests.
Fibre characteristics in the crack are analysed in a micro-computed tomography image of a concrete
sample. For more general predictions, a stochastic fibre model with a one-parametric orientation
distribution is introduced. Simple estimators for the orientation parameter are presented, which only
require fibre orientations in the crack plane. Our prediction method is calibrated to fit experimental
tensile curves.

Keywords: computed tomography; fibre-reinforced concrete; mechanics; quantitative image analysis;
stochastic modelling; stress–strain diagram; tensile tests

1. Introduction

Ultra-high-performance concrete (UHPC) is characterised by a high packing density,
which yields beneficial properties such as high compression strength (>150 MPa) and
durability [1–5]. To ensure a ductile behaviour under compression, it is indispensable
to add steel fibres to UHPC [6–10]. The high bond capacity of the ultra-high perfor-
mance fibre-reinforced concrete (UHPFRC) results in a reasonably high post-crack tensile
strength [11,12]. This enables the use of UHPFRC as integrated material without conven-
tional reinforcement.

The post-crack tensile strength of UHPFRC highly depends on geometric character-
istics of the fibre system such as fibre content, shape, aspect ratio, spatial arrangement,
and orientation. The latter two may vary depending on production parameters of the
concrete [13]. A high tensile strength is obtained if the crack-crossing fibres are evenly
distributed over the crack and if the fibres are aligned to the tensile axis [13–15].

Several authors [16–27] proposed prediction models for the tensile behaviour based
on single-fibre pull-out force contributions. The prediction models by Li et al. [16] and
Wuest et al. [17] integrate the force contributions of crack-crossing fibres over the entire
crack plane in the tensioned fibre reinforced concrete. Such a sectional analysis provides
a relation between stress and crack opening. The force contribution of individual crack-
crossing fibres can be approximated from single-fibre pull-out tests for selected fibre
orientations and embedded lengths [18,21,27–29] or by analytical equations [19,20,23,24].
For modelling purposes, the experimental single-fibre pull-out curves are averaged [25] or
idealised [23,27] as piecewise linear with cut points equal to the tensile force at the end of
the linear phase and the ultimate force. Besides the fibres, also the matrix contributes to the
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tensile resistance. Experimental fibre-pull-out curves naturally contain information on fibre–
matrix bond properties. If such data are not available, the matrix resistance contribution can
be modelled by bilinear [30,31], trilinear [32,33], or exponential [22] functions and added to
the fibre force contributions.

A common assumption in calculating the force contributions of crack-crossing fibres is
that the fibre orientation is uniformly distributed [19,22,31,34,35], i.e., that concrete is an
isotropic material—this simplifies calculations. In practice, however, the fibre orientation
distribution deviates significantly from this assumption [13]. This should be taken into
account for formulating more realistic models. Empirical fibre orientation distributions
determined by image analysis are used in [25,27,36] while [37] derive orientation informa-
tion from hydrodynamic equations related to concrete flow. The authors are not aware of
any study that models the fibre direction distribution stochastically beyond the previously
mentioned simple uniformity assumptions or empirical investigations.

An alternative prediction approach is to derive simple analytical equations based on
concrete characteristics. A review of such models for predicting the shear capacity is given
by [38]. None of these take the fibre orientation distribution into account.

Furthermore, (nonlinear) finite element approaches are nowadays popular, for in-
stance, to predict the overall hysteretic response of cyclic-loaded SFRC [39] or to verify the
micromechanics-based fibre-bridging curves of tensioned UHPFRC [23]. Drawbacks of FE
methods are the higher computational effort compared to analytical methods and that val-
ues of material parameters (such as friction parameters) have to be available. Simulating the
contact relationship between steel fibre and matrix via contact [40,41] and coupling [42,43]
algorithms requires identical locations for fibre and matrix nodes. This is impractical in the
mesh generation and for performing numerical calculations incorporating large quantities
of small fibres [35]. The recently introduced model of [35] overcomes this problem, but
again only considers uniformly distributed fibre orientations.

Combining suitable imaging techniques with quantitative image analysis is an estab-
lished way to measure geometric characteristics of the fibre system. For the prediction of
tensile behaviour, characteristics of fibres intersecting the crack plane are required; there-
fore, 2D images of cross sections of concrete specimens are frequently studied; however,
the fibre orientation can only be roughly determined from such sections [31,44,45], and
the measurement of the embedded length is not possible at all [22]. A more accurate
characterisation is obtained by quantitative analysis of micro-computed tomography (µCT)
images that allow for a reconstruction of the whole fibre system in 3D [46–48].

This work presents a tensile prediction model for UHPFRC-specimens based on a
stochastic model for the 3D fibre system and an extensive single-fibre pull-out study. Input
parameters for the fibre model are the distribution of fibre orientations, the fibre volume
fraction, and the dimensions (length, diameter) of the fibres. The fibre orientation distribu-
tion is modelled by a one-parametric distribution family whose parameter β controls the
fibre anisotropy, i.e., the scatter of orientations about the preferred direction. The parameter
can be estimated either from a sample of fibres observed in a 3D specimen (3D case) or
from fibres crossing a planar section of the specimen (2D case).

For fitting the fibre model, a UHPFRC-specimen from a previous study [13] was
scanned by micro-computed tomography to reconstruct and analyse its 3D fibre system.
This way, embedded length and orientation of the fibres intersecting the crack observed
in a mechanical test of the specimen could be determined. A model for the single-fibre
contributions to the tensile behaviour is obtained by fitting piecewise linear functions to the
force–slip curves observed in single-fibre pull-out tests. Following [34,49], the predicted
tensile curve is the sum of all single-fibre pull-out force contributions of crack-crossing
fibres. In practice, the tensile behaviour of individually embedded fibres (as used in the
pull-out tests) may show deviations from the behaviour of fibres in a larger UHPFRC
sample [31]. To take this effect into account, scaling and shifting parameters are introduced,
which allow for a calibration of the prediction model to stress–strain curves recorded
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in experimental tensile tests. Randomising some of the model components yields more
realistic curve shapes than a deterministic model.

Our main contribution is the introduction of a stochastic fibre model with a fibre
orientation distribution that goes beyond the simple assumptions often considered in the
literature (all fibres aligned in one orientation or every fibre orientation is equally probable).
Furthermore, we discuss the widespread but flawed assumption that the fibre orientation
distribution of crack-crossing fibres coincides with that of the entire 3D fibre system. We
present correct and easy parameter estimators for our orientation distribution model. Our
fibre model serves as an input to the tensile prediction model, allowing us to simulate
the stochastic variability and uncertainty in the tensile prediction. Additionally, certain
production parameters such as the fibre volume fraction or the orientation distribution can
be varied in the model allowing for a prediction even for cases where no experimental data
are available. Apart from the randomness of the fibre geometry, we also randomise the
model for single-fibre force contributions. This provides a further means of incorporating
uncertainty in our prediction approach and results in more realistic shapes of the stress–
strain curves.

2. Materials and Methods
2.1. Production and Characterisation of the UHPFRC-Specimens

We consider a UHPC-mixture with a maximum grain size of 1 mm. Details on the
specification can be found in Table 1 (or see the description of mixture M02 in [13]). Concrete
was produced by using the Eirich-Intensive Vacuum mixer of 5 L volume capacity. The
same procedure and mix regime as given in [13] were applied. The fresh concrete tests
showed similar spread flow, bulk density, and void content values as reported in [13]. For
reinforcement, fibres with an ultimate tensile strength of 2800 MPa and elasticity modulus
of 200,000 MPa were used. The fibre volume fraction (VV) was chosen as 2%, and the fibre
aspect ratio was l f /d f = 12.5/0.2 [mm/mm]. Specimens of size 40 × 40 × 160 mm3 were
produced. The casting of the specimens was carried out from one side of the formwork,
reproducing the configuration M02F2s02 from [13]. The specimens were cured in a climate
chamber for 28 days.

Table 1. Constituents (given in grams per litre), bending tensile strength and compression strength of
the UHPC-mixture used in the tests.

Cement CEM I 52.5 R SR3- NA (Sulfo 5R) 825 g/L
Quarz Sand 0.125/0.5 Haltern 975 g/L
Quarz Flour-MILLISIL-W12 200 g/L

Silica fume: Sika Silicoll P uncompacted 175 g/L
Water 179 g/L

PCE-plasticizer—Sika Viscocrete 2810 30.25 g/L
Strain at uniaxial tensile strength (εr) 0.00087 [mm/mm]

Uniaxial tensile strength 6.4 MPa
Bending tensile strength 13.77 MPa
Compression strength 150.2 MPa

2.2. Imaging and Image Segmentation

Specimen M02F2s02 from [13] was scanned by micro-computed tomography (µCT) at
the Fraunhofer Institut für Techno- und Wirtschaftsmathematik in Kaiserslautern, Germany.
To reduce grey value variations in the images, the cubic specimen was placed in a cylindrical
UHPC shell during the scanning process. The CT tube was a Feinfocus FXE 225.51 with a
maximum acceleration voltage of 225 kV and maximum power of 20W. A Perkin Elmer
detector XRD 1621 with 2048× 2048 pixels was used. The tube voltage was 190 kV, the target
electricity 65 µA, and the power 12 W. Tomographic reconstructions were obtained from
800 projections. The specimen of size 40 × 40 × 160 mm3 corresponds to a reconstructed
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image of 441 × 441 × 1766 voxels with a voxel edge length of 90.6 µm. The fibre system
was segmented from the grey value image as described in [13].

For calculating the tensile force contribution of single fibres in a loaded composite,
the individual fibres have to be separated in the segmentation. Due to the coarse image
resolution, the space between touching fibres is not sufficiently resolved. Hence, labelling
the connected components of the fibre system leads to the formation of fibre clusters. For
separating fibres in the clusters, a particle separation based on the watershed transform was
applied [50]. During this procedure, fibres were split into segments, which were merged
manually to reconstruct the single fibres.

After CT scanning, a four point bending test was performed on the sample, see [13] for
details. During this test, the specimen developed an approximately planar crack parallel
to the xy plane in the CT image. The location of this crack was identified in the CT scan.
Due to the complexity of the single-fibre segmentation, the analysis was restricted to the
vicinity of the crack plane such that orientation and embedded length of all fibres crossing
the crack could be determined.

2.3. Tensile Tests

Three concrete samples were tested experimentally in uniaxial tensile tests. The tensile
test regime is as in [15] and briefly summarised in the following. For testing, the specimen
was placed in the gripping jaws with a contact area of 40 × 60 mm2 and fixed by six bolts,
which were pulled by a moment of 110 Nm. This pull moment was determined as the
maximum such that no cracks occurred in the clamping area. The specimen was fixed in
the pull machine by two nuts. In this setup, a field of 40 mm length located in the centre
of the specimens was tensioned. The tests were carried out in a displacement-controlled
manner. A low load rate of 0.1 mm/min was chosen. The lengthening of the 40 mm
field was measured by using two extensometers. The test was stopped as soon as the
lengthening of the field reached 2 mm. During the uniaxial tensile tests, load-lengthening
curves were recorded.

It is known that eccentricity occurs in the internal resisting forces due to a non-uniform
distribution of fibres in the cross-section. Nevertheless, the stress distribution over the
cross-section was assumed to remain uniform during the initial cracking phase and after
crack localisation. Thus, the uniaxial equivalent stress reads σ = F

A , where F is the force
value and A is the area of the cross-section. The strain reads ε = ∆L

L , where the measured
lengthening ∆L is divided by the tensioned length L = 40 mm.

Two strength values were computed for every specimen: the elastic post-crack tensile
strength (σel), which corresponds to the force at the end of the linear phase in the curve
(limit of proportionality) in sense of [51], and the ultimate post-crack tensile strength (σult),
which corresponds to the maximum force reached.

2.4. Modelling Single-Fibre Pull-Out Curves

For performing single-fibre pull-out tests, individual fibres were embedded in a
concrete slab. The same concrete mixture and fibres as described in Section 2.1 were used.
The length le of the fibre part embedded in the concrete and the inclination angle θ of the
fibres with respect to the pull-out direction were varied. The embedded length le was
chosen as one half, one third or one sixth of the fibre length, i.e., le is l f /2 = 6.25 mm,
l f /3 ≈ 4.17 mm or l f /6 ≈ 2.08 mm. The inclination angle θ was varied from 0◦ to 80◦ in
steps of 10◦. For testing, the free end of the fibre was clamped between two metal jaws of the
testing machine and pulled out while rigidly fixing the concrete slab. During the procedure,
force–slip curves reporting the force P applied and the slip s were recorded. At least
six fibres were tested for each combination (θ, le) resulting in more than 162 single-fibre
pull-out curves.
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Figure 1 shows the force–slip curves Pi(s, θ, le), i = 1, . . . , 6, of the six tested fibres with
θ = 10◦ and le = l f /2. We denote by Ṗ(s, θ, le) the median curve, which is the point-wise
median of the six single-fibre pull-out curves for a fixed combination (θ, le), i.e.,

Ṗ(s, θ, le) = med(P1(s, θ, le), . . . , P6(s, θ, le)), s ∈ [0, le]. (1)

In the next step, we fit a piecewise linear model to the observed force–slip curves. In the
literature, several approaches (bilinear, trilinear, exponentially decreasing) for modelling
single-fibre pull-out curves have been suggested, see [31]. Based on the results of our
single-fibre pull-out tests, we decided to use a three-phase model. Phase I represents the
linear elastic part of the curve up to the yield strength Pel that is reached at slip sel . Phase
II is the nonlinear part up to the ultimate force Pult at slip sult. For simplicity, this part is
also described by a linear model. Phase III is a linear descending branch up to complete
fibre pull-out at slip stot, i.e., the last recorded slip value. See Figure 2 for an illustration of
the model.

Figure 1. Median curve (red solid) of the single-fibre pull-out curves (black dotted) with angle
θ = 10◦ and le = l f /2.

Ptri(s, θ, le)

s
sel(θ, le) sult(θ, le) stot(θ, le)

Pel(θ, le)

Pult(θ, le)
I II III

Figure 2. Simplified single-fibre pull-out curve. Phase I and II given as linear increasing branches
and phase III given as linear descending branch.
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For fitting the model, the force and slip values derived from the six fibre-pull-out tests
per combination (θ, le) are averaged. We use the median values

Pel,med(θ, le) = med(Pel,1(θ, le), . . . , Pel,6(θ, le))

Pult,med(θ, le) = med(Pult,1(θ, le), . . . , Pult,6(θ, le))

sel,med(θ, le) = med(sel,1(θ, le), . . . , sel,6(θ, le))

sult,med(θ, le) = med(sult,1(θ, le), . . . , sult,6(θ, le))

stot,med(θ, le) = med(stot,1(θ, le), . . . , stot,6(θ, le)).

The numerical values are given in Appendix A, Table A1. When performing a robust
two-factor ANOVA, equality of means is rejected for each of the five characteristics. One
exception is Pult where the hypothesis of equal means over angles cannot be rejected at the
5% level (p-value = 0.083). In spite of this finding, we use individual values for all (θ, le)
groups for all five characteristics rather than merging groups for Pult.

In summary, the model reads

Ptri(s, θ, le) =



p1 · s 0 ≤ s ≤ sel,med(θ, le)
(phase I)

p2 · s + r1 sel,med(θ, le) ≤ s ≤ sult,med(θ, le)
(phase II)

p3 · s + r2 sult,med(θ, le) ≤ s ≤ stot,med(θ, le)
(phase III).

(2)

Formulas for and estimates of the parameters p1, p2 > 0, p3 < 0, and r1, r2 ∈ R are
summarised in Appendix A, Table A2. Figure 3 illustrates the model for θ = 10◦ and
le = l f /2, l f /3, l f /6.

Figure 3. Trilinear curves (solid) of the single-fibre pull-out force curves (dotted) with angle θ = 10◦

and embedded lengths le = l f /2, le = l f /3, le = l f /6.

2.5. Prediction Model for Tensile Stress

Our model is based on the following assumptions (see also [16,49]):

• The UHPC matrix is a statistically homogeneous material [52], (p. 28).
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• Fibres are straight with cylindrical geometry. The fibres have fixed length l f and
diameter d f .

• The spatial distribution of the fibre positions in the UHPC is statistically homoge-
neous [52], (p. 28).

• The fibre orientation is random following a given probability density function (p.d.f.) p.
• The specimen is uniaxially strained.
• During loading, the specimen develops a planar crack C of width w and area AC

orthogonal to the tension axis, see Figure 4.
• With growing crack width, the shorter fibre end is pulled out of the concrete matrix.

The longer end is not affected.
• The fibres behave linearly elastic.
• The matrix deformation and the Poisson effect of the fibres during pull-out are ne-

glected. The fibre–matrix bond is frictional.

If the strain ε exceeds εr, the strain at the uniaxial tensile strength of the UHPC, a crack
starts to form. The crack width w is given by

w =

{
0, ε ≤ εr

(ε− εr) · L, ε > εr
(3)

with L = 40 mm and εr = 0.00087. Fibres crossing the crack are divided into the two
segments to the left and to the right of the crack plane. We denote the length of the shorter
segment by le, see Figure 4, such that le ∈ [0, l f /2]. With increasing crack width w, the
shorter fibre end is pulled out of the concrete until the fibre becomes detached at w > le.

UHPC-matrix

planar crack C

fibre

embedded length le

tension axisθ

Z

Y

X

Figure 4. UHPC matrix with one fibre intersecting a planar crack C (assumed to be embedded in the
(X,Y)-plane) at crack width w = 0. The crack divides the fibre in two parts. The embedded length le
is the length of the shorter (green) fibre part. The angle between fibre and tension axis (assumed to be
the Z-axis) is denoted by θ.

For predicting the stress evolution with increasing crack width w, the single-fibre
pull-out forces P(s, θ, le) of the fibres crossing, the crack have to be taken into account.
Due to the assumption that only the shorter fibre end is pulled out of the concrete, the
slip s corresponds to the crack width w. Furthermore, le in the single-fibre pull-out tests
corresponds to the embedded length le. Thus, we use s = w and le = le in (2).

Assume that the planar crack C is crossed by N fibres with given inclination angles
and embedded lengths (θ1, le,1), . . . , (θN , le,N). As experimental single-fibre pull-out curves
are only available for a discrete set of θ and le values, the forces P(w, θ, le) of fibres in C are
binned into classes as given in Table 2.
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Table 2. Binning of embedded length le and inclination angle θ.

Class Interval P(w, θ, le)

T1 θ ∈ [ 0◦; 5◦) P(w, 0◦, le)
T2 θ ∈ [5◦; 15◦) P(w, 10◦, le)

...
...

...

T9 θ ∈ [75◦; 90◦] P(w, 80◦, le)

L1 le ∈ [0 mm; 2.5 mm) P(w, θ, 2.08)
L2 le ∈ [2.5 mm; 5 mm) P(w, θ, 4.17)
L3 le ∈ [5 mm; 6.25 mm) P(w, θ, 6.25)

Fibres crossing the crack counteract the opening of the crack. According to [34,49], the
composite stress (or mean resistance force per unit area) at crack width w is obtained by

σct(w) = λc

l f
2∫

0

π
2∫

0

P(w, θ, le)pc(θ, le) dθ dle, (4)

where pc(θ, le) denotes the joint probability density of inclination angle and embedded
length of crack-crossing fibres. λc is the mean number of fibres per unit area in C.

We approximate σct(w) by first replacing the integral in (4) by a sum over all fibres
observed in the crack. In the second step, angles and embedded lengths are binned such
that model (2) can be applied.

σct(w) ≈ 1
AC

N

∑
k=1

P(w, θk, le,k) (5)

≈ 1
AC

9

∑
i=1

3

∑
j=1

NTi ,Lj P̃(w, θi, le,j). (6)

Here, NTi ,Lj denotes the number of fibres in C with θk ∈ Ti and le,k ∈ Lj, k ∈ {1, . . . , N},
i ∈ {1, . . . , 9}, j ∈ {1, 2, 3}. P̃ is a prediction of P by the median curve or by the trilinear
model. We denote the prediction based on P̃ = Ṗ by σmed

ct (w) and the prediction based on
P̃ = Ptri by σtri

ct (w).

2.6. Stochastic Fibre Model

In the following, we introduce a stochastic fibre model to generate 3D fibre systems
of virtual specimens. Their tensile behaviour can then be predicted with our stress predic-
tion model.

The fibre system is modelled by a Boolean model [53] as follows: The positions of
fibres are indicated by their midpoints, which are modelled by a Poisson point process.
That is, the number N of fibre midpoints (x, y, z) in a given volume V follows a Poisson
distribution with parameter λ · V, where λ > 0 is the mean number of fibres per unit
volume. Locations of fibre midpoints are drawn independently from a uniform distribution
on the volume of interest.

The orientation of a fibre is independent of its location and can be described in
spherical coordinates with co-latitude angle θ ∈ [0, π/2) and longitude angle ϕ ∈ [0, 2π).
Assuming the Z-axis to be the tension axis, θ corresponds to the inclination angle of the
fibre with respect to the tension axis. The longitude angle ϕ does not influence the force
contribution of a fibre. Hence, we consider ϕ to be uniformly distributed on [0, 2π) such
that the probability density function of the fibre orientation is a function p(θ) depending
only on θ.
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We assume that θ follows a one-parametric orientation distribution described by the p.d.f

p(θ) =
β sin(θ)

(1 + (β2 − 1) cos2(θ))
3
2

, θ ∈
[
0,

π

2

]
, β > 0, (7)

see [50,54–56] for details and applications. The anisotropy parameter β controls the align-
ment of the fibres. For β = 1, the fibres are isotropically oriented. For decreasing β, the
fibres tend to be aligned along the Z-axis, see Figure 5. For β > 1, the fibre orientations are
concentrated in a plane. This case is not considered here.

(a) (b) (c)

Figure 5. Realisations of the fibre model for different anisotropy parameters β. (a) β = 1 (isotropic);
(b) β = 0.5; (c) β = 0.01.

For fitting the model to a given concrete sample, the characteristics λ and β can be
obtained from µCT images, see [50,55,57]. Due to the low fibre volume fraction, we assume
that overlap of fibres in the model is negligible. Hence, the fibre intensity λ can be computed
from the fibre volume fraction VV , the fibre length l f and cross-sectional area A f via

λ =
VV

l f A f
. (8)

If a single-fibre segmentation is available, an estimate of the anisotropy parameter β
can be determined from the sample θ1, . . . , θN of inclination angles by using the maximum
likelihood method as described in [54]. An estimate of β based on the method of moments
is given by (see Appendix B)

β̂mom =
N

∑N
i=1 cos(θi)

− 1. (9)

The Boolean model described so far yields a stochastic fibre system in 3D. The predic-
tion model outlined in Section 2.5 requires only inclination angles θ and embedded lengths
le of the fibres intersecting the crack plane C. Due to the spatial homogeneity of the model,
C can be assumed to be contained in the (X,Y)-plane. In the Boolean model, fibre position
and orientation are independent. Hence, le and θ are independent. Thus, the joint p.d.f.
of θ and le for crack-crossing fibres fulfils pc(θ, l) = pc(θ)ple(l) where pc(θ) is the p.d.f. of
inclination angles θ of fibres crossing the crack and ple(l) is the p.d.f. of le. The spatial
homogeneity of the Boolean model implies that le is uniformly distributed on [0; l f /2]. The
planar characteristics are related to the spatial characteristics as follows [49,50,53]

ple(l) =
2
l f

, l ∈ [0; l f /2] (10)

pc(θ) = (1 + β)p(θ) cos(θ) (11)

λc =
λl f

1 + β
(12)

where λc is the expected number of fibres per unit area in C.
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Note that the difference between (7) and (11) can be explained as follows [49,58]: The
p.d.f. p(θ) takes every fibre in the reinforced concrete into account whereas pc(θ) accounts
only for fibres intersecting the crack plane. A fibre is more likely to hit the crack plane if its
inclination angle θ is small. The assumption that the distribution pc(θ) is equal to p(θ) is a
common misunderstanding that leads to incorrect interpretations of measurement results
(see [22,31,59]).

If a single-fibre segmentation of fibres in a crack is available, an estimate of the
anisotropy parameter β can be determined from the sample θc,1, . . . , θc,N of inclination
angles of crack-crossing fibres by using a modified version of the maximum likelihood
estimator given in [54]. An estimator of β based on the method of moments is given by

β̂c,mom =
N

∑N
i=1 cos2(θc,i)

− 1, (13)

see Appendix B for details.
The fibre orientation coefficient ηθ is a widely established characteristic for the distri-

bution of fibre orientation in a crack [22,31,33,50,60–62]. ηθ is the second moment of the
angular deviation of the crack-crossing fibre from the tension axis. Here, it is possible to
calculate ηθ in closed form:

ηθ =

π
2∫

0

pc(θ) cos2(θ) dθ =
1

1 + β
=

λc

λl f
(14)

For an isotropic fibre orientation (β = 1), which is assumed in several studies [19,22,31,34],
it follows that λc =

1
2 λl f , pc(θ) = 2 sin(θ) cos(θ) = sin(2θ) and ηθ = 1

2 . In the extreme case
that all fibres are aligned along the tension axis (β = 0), it follows that λc = λl f , and ηθ = 1.

3. Results and Discussion
3.1. Image Analysis

The crack observed in the imaged sample is approximated by a plane whose position
is identified in the CT scan, see Figure 6a. Among the segmented fibres, N = 598 cross
the crack plane. Inclination angles of the individual fibres are determined by using partial
second derivatives as described in our former study [13]. Fibre lengths can be measured by
the maximal Feret diameter [63]. Note that the Feret diameter of a particle is defined as the
minimal distance between two parallel planes that are orthogonal to a specified direction
and enclose the particle. The maximal Feret diameter is obtained by maximization over
all directions. By intersection with the crack plane, each fibre is split into two segments.
The embedded length le is the maximal Feret diameter of the shorter one of these segments.
From the inclination angles θc,i, we obtain β̂c,mom = 0.22.

By Equation (12) with β = 0.22 the expected number of fibres in the cross section
is AC · λc = 834. The observed number N = 598 is well below that value. There are
several possible explanations. In [13], the fibre content at the crack location was observed
to be about 5% lower than the theoretical value of VV = 0.02 (see [13] Figure 12g at the
approximate crack position in Slice 641). Additionally, according to the master datasheet of
the fibres used, both, the diameter d f and the fibre length l f can deviate by 10%.
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(a) (b)

Figure 6. Volume rendering of fibres in the crack area (a) and a fitted fibre system (b). The subvolume
is of dimension 3.6 cm2 × 0.45 cm. The position of C in (a) is indicated by a solid white line.

In Figure 7, the distributions of observed inclination angles and embedded lengths are
compared with the fitted p.d.f.s pc(θ) (with β = 0.22) and ple(l). The inclination angles are
well fitted. A chi-square goodness-of-fit test does not reject the hypothesis that the inclina-
tion angles follow a distribution with p.d.f. pc(θ) with β = 0.22 (p-value = 0.1244). The dis-
tribution of the embedded length has an unexpected peak around 4.5 mm. The hypothesis
that the embedded length are uniformly distributed is rejected by a Kolmogorov–Smirnov
goodness-of-fit test (p-value < 10−4). A possible explanation is that short fibre segments
(whose diameter in the µCT image corresponds to only 2 to 3 voxels) were missed. It should
be noted that we are not aware of any practical way of estimating le from a 2D slice as was
also mentioned in [22]. A fibre system simulated as a realisation of the Boolean model with
β = 0.22, l f = 12.5 mm, d f = 0.2 mm, and VV = 0.02 is shown in Figure 6b.

(a) (b)

Figure 7. Observed inclination angle (a) and embedded length (b) of the fibres intersecting the crack
(solid lines) and the corresponding fitted p.d.f. pc(θ) with β = 0.22 and ple (l) (dotted lines).

3.2. Prediction of Tensile Stress

To predict the composite stress σct using Equation (6), we need NTi ,Lj , the number
of crack-crossing fibres with (θ, le) in class (Ti, Lj), i = 1, . . . , 9, j = 1, 2, 3. Based on the
single-fibre segmentation, we derive NTi ,Lj as given in Table 3.
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Experimental tensile tests were carried out on three specimens as described in Section 2.3.
The ultimate tensile stress and the corresponding strain of the experimental tensile curves are
given in Table 4. The observed tensile curves are used to calibrate our prediction.

Table 3. Number of fibres in the (θ, le) bins as obtained from the single-fibre segmentation of the
µCT image.

Lj

Ti
0◦ 10◦ 20◦ 30◦ 40◦ 50◦ 60◦ 70◦ 80◦

l f /2 10 52 39 14 6 6 3 1 0
l f /3 20 92 91 35 20 9 6 1 1
l f /6 14 48 44 34 16 14 8 6 8

Table 4. Ultimate tensile stress and the corresponding tensile strain of three uniaxially loaded specimens.

1 2 3 Mean

σ
exp
ult [MPa] 10.97 11.21 12.34 σult,exp = 11.51

ε
exp
ult [mm/mm] 0.01064 0.0010 0.0095 εult,exp = 0.0070

3.2.1. Prediction of Tensile Stress Based on Median Curve

Here, we use the median curve to predict σct by σmed
ct . Figure 8a shows the prediction

as well as the three experimental tensile curves. We see that the prediction overestimates
the stress. The predicted ultimate tensile stress is 18.56 MPa which is reached at strain
εmed

ult = 0.0230 [mm/mm].

(a) (b)

(c) (d)

Figure 8. Prediction of composite stress σct(ε) by σmed
ct (ε) (a) compared with three experimental

tensile curves. Scaled σmed
ct (ε) by stress scaling factor Sσ

ult = 0.61 (b) and additionally scaled strain by
strain scaling factor S ε

ult = 0.42 (c). (d) Prediction based on Equation (15).
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To calibrate the curves, we follow [19,22,31,64] and introduce suitable rescaling factors
to match characteristic stress-strain points (i.e., ultimate tensile stress σct,ult or yield stress
σct,el) of experiments and predictions.

In the first step, we scale σmed
ct by a stress scaling factor Sσ

ult such that the predicted
and mean experimental ultimate stress coincide, i.e., Sσ

ultσ
med
ct,ult = σult,exp. This is achieved

for Sσ
ult = 0.61, see Figure 8b. In the next step, the locations of the maxima have to be

matched. To this end, we additionally scale the strain axis by a strain scaling factor S ε
ult. The

choice S ε
ult = 0.42 yields S ε

ultε
med
ult = εult,exp such that the maxima are closer together (see

Figure 8c); however, the slope of the curve after the maximum does not fit the experimental
curves. A remedy is to restrict scaling of the strain axis to the region prior to the maximum,
that is,

σmed,scale
ct (ε) =


σmed

ct

(
ε
S ε

ult

)
ε ∈

[
0, εult,exp

]
σmed

ct

(
εmed

ult +
εmed

tot −εmed
ult

εmed
tot −εult,exp

· (ε− εult,exp)

)
ε ∈

(
εult,exp, εmed

tot

]
,

(15)

where εmed
tot is the last available strain value in the median curve. This way, both, the

maximum location and the stress at the final point εmed
tot are matched. The result shown

in Figure 8d indicates that the slope after the ultimate tensile stress is reduced due to the
fixation of εmed

tot .

3.2.2. Prediction of Tensile Stress Based on the Trilinear Model

Here, we use model (2) to predict σct by σtri
ct . As for the median curve we need

to modify the prediction. Instead of piecewise scaling equivalent to Equation (15), we
recompute (2) with new values for slip and force given by

s◦el,med(θ, le) = 0.072 · sel,med(θ, le) (16)

s◦ult,med(θ, le) = 0.36 · sult,med(θ, le) (17)

s◦tot,med(θ, le) = stot,med(θ, le) (18)

P◦el,med(θ, le) = 0.66 · Pel,med(θ, le) (19)

P◦ult,med(θ, le) = 0.66 · Pult,med(θ, le) (20)

where sel,med(θ, le), sult,med(θ, le), stot,med(θ, le), Pel,med(θ, le), Pult,med(θ, le) are given in Table A1.
The new parameters (p◦1 , p◦2 , p◦3 , r◦1 , r◦2) are calculated as in Appendix A2. The prediction is
given in Figure 9. The factors are chosen such that σtri

ct,ult = σult,exp and εtri
ct,ult = εult,exp.

Figure 9. Prediction of composite stress σct(ε) by σtri
ct (ε) based on the trilinear model.

In the interval between yield and ultimate stress, the predicted curve is straighter
than the experimental stress curves, which can be explained by the use of a linear model.
Furthermore, the maximal peak is more pronounced than in the experimental tests. This
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may be due to the replacement of the individual single-fibre pull-out forces Pi by average
forces Ptri obtained from the trilinear model. To overcome this problem, we propose a
model based on randomised single-fibre contributions in the following section.

3.2.3. Prediction of Tensile Curves Based on Randomised Trilinear Model

In order to model the random variations in the tensile curves, we consider sult,med as
random following a uniform distribution and add normally distributed residuals to the
yield and the ultimate force. This way, individual functions P̃ are simulated for each fibre
in the crack. The range of values of the required random variables is inferred from the
single-fibre pull-out experiments.

Prediction study part 1: Stress prediction with randomised strain shifts

We define the interval

Iult(θ, le) =
[

min
i=1,...,6

(sult,i(θ, le)); max
i=1,...,6

(sult,i(θ, le))
]

(21)

and choose

s∗ult,med(θ, le) ∼ U (Iult(θ, le)) (22)

r∗Pel,med
(θ, le) ∼ N (0, sd2

Pel,med
(θ, le)) (23)

r∗Pult,med
(θ, le) ∼ N (0, sd2

Pult,med
(θ, le)), (24)

where the minimum and maximum values of sult,i and the sample standard deviations
sdPel,med and sdPult,med for each combination (θ, le) are given in Appendix A, Table A1. Then,
we recompute the trilinear curve with

s◦el,med(θ, le) = 0.072 · sel,med(θ, le) (25)

s◦ult,med(θ, le) = 0.36 · s∗ult,med(θ, le) (26)

s◦tot,med(θ, le) = stot,med(θ, le) (27)

P◦el,med(θ, le) = 0.68 · Pel,med(θ, le) + r∗Pel,med
(θ, le) (28)

P◦ult,med(θ, le) = 0.68 · Pult,med(θ, le) + r∗Pult,med
(θ, le). (29)

M = 10 predictions based on the fibre system observed in the CT image are shown in
Figure 10a. The predictions reproduce the stress profile better than the deterministic predictions.

Prediction study part 2: Stress prediction of virtual specimens with varying production pa-
rameters We use the stochastic fibre model from Section 2.6 to generate fibre systems of

virtual specimens. The model parameters are determined from the crack-crossing fibres
of the scanned specimen. From each model realization, we derive the values of (θ, le) for
all fibres intersecting a virtual crack plane C. Figure 10b shows a tensile prediction of ten
virtual fibre systems when using the randomized prediction scheme described above.

Predictions for virtual samples with modified orientation distribution and volume
fraction VV are shown in Figure 10. Note that the fibre parameters d f and l f were not
varied since the single-fibre pull-out tests were restricted to fibres with d f = 0.2 mm and
l f = 12.5 mm. Figure 10c shows that a fibre orientation along the tensile axis increases the
tensile stress compared to an isotropic fibre orientation. This is in accordance with [22,31].
In particular, this plot shows that the common assumptions of completely aligned or
isotropic fibres result in quite different predictions. Figure 10d reveals that the influence
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of the volume fraction also behaves as expected: Fewer fibres decrease and more fibres
increase the tensile stress.

(a) (b)

(c) (d)

Figure 10. Prediction of M = 10 tensile curves (a) based on the CT scanned fibre system summarised
in Table 3, (b) tensile prediction of 10 virtual specimens with fibre system generated by the stochastic
fibre model from Section 2.6 with input parameters determined from the scanned fibre system. The
predictions are compared with the three experimental tensile curves. (c) and (d) Tensile prediction of
10 virtual specimens with varied parameters. (c)β = 0.01, 0.22, 1 is varied and VV is fixed. (d) β is
fixed and VV = 0.01, 0.02, 0.03 is varied. The mean of the tensile predictions per varied parameter is
given as a dotted line.

4. Conclusions

In this study, we present a prediction model for tensile behaviour of UHPFRC-
specimens based on statistical information on the fibre system and extensive single-fibre
pull-out tests. The model is calibrated by comparing the prediction to the results of exper-
imental uniaxial tensile tests. We introduced a stochastic fibre model that allows for the
generation of fibre systems of virtual specimens, which can be used for the prediction of
the tensile behaviour. Through experimental and theoretical investigations, the following
conclusions are drawn:

• The fibre system in the concrete is modelled by a Boolean model of straight cylinders.
The fibre orientation distribution is represented by a one-parametric distribution
family. Its parameter β controls the anisotropy of the fibre orientation. Both, the case
of total alignment and isotropy are included in the model as special cases. The widely
used reference value ηθ (fibre orientation factor) can be calculated directly from β.
In particular, the relationship of fibre orientation of the full 3D fibre system and of
crack-crossing fibres is examined.

• We emphasised the difference between the p.d.f. for the fibre orientation of all fibres
in the reinforced concrete and the p.d.f. for the fibre orientation of fibres intersecting a
crack plane. The assumption that the p.d.f.s are equal is a common misunderstanding
that leads to incorrect interpretations of measurement results (see [22,31,59]).

• Estimators for β are presented and analysed. We recommend the method of moments
estimator β̂c,mom. It estimates accurately, no numerical method is required (such as
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a gradient descent algorithm in [55]) and only the fibre angles in 2D cross-sections
are needed.

• In contrast to 2D imaging methods, µCT allows for a determination of the embedded
length of fibres in cracks since the whole 3D fibre system is observable. In particular,
this allows for the validation of the fundamental assumption of a uniformly distributed
embedded length le for the widespread tension-softening model in [16]. Furthermore,
using µCT overcomes the accuracy disadvantage of fibre orientation estimation in 2D
sections as discussed in [22].

• The presented prediction model uses the stochastic fibre model combined with a sta-
tistical analysis and stochastic modelling of the single-fibre pull-out tests. Predictions
are calibrated by using experimental tensile curves. Running the prediction on virtual
specimens with varied production parameters led to reasonable stress–strain curves.
More research with additional samples is needed to validate the model and investigate
its robustness to changes in the production parameters.
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Abbreviations
The following abbreviations are used in this manuscript:

UHPFRC ultra-high performance fibre-reinforced concrete
µCT micro-computed tomography
p.d.f. probability density function
l f fibre length
d f fibre diameter
A f fibre cross-section
VV fibre volume fraction
L tensioned length
F force
A area of the specimen cross-section
C planar crack
AC area of crack C
w crack width
s slip
θ inclination angle
le, le embedded length in single fibre pull-out tests, in cracked UHPFRC
sel(θ, le) slip value of Pel(θ, le)
sult(θ, le) slip value of Pult(θ, le)
stot(θ, le) last slip value
sel,med(θ, le) median of sel(θ, le)
sult,med(θ, le) median of sult(θ, le)
stot,med(θ, le) median of stot(θ, le)
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P(s, θ, le) single-fibre pull-out force
Pel(θ, le) tensile force at the end of the linear phase
Pult(θ, le) ultimate force
Ṗ points-wise median curve
Ptri trilinear curve
Pel,med(θ, le) median of the six fibre pull-out forces Pel(θ, le)
Pult,med(θ, le) median of Pult(θ, le)
pi, rj parameters of Ptri, i = 1, 2, 3, j = 1, 2
Ti, Lj classes for θ, le, i = 1, . . . , 9, j = 1, 2, 3
NTi ,Lj number of fibres with (θ, le) ∈ (Ti, Lj) in C
ε strain
εr crack strain
σ uniaxial stress
σexp, εexp uniaxial stress, strain from experimental tensile curves
σult,exp, εult,exp mean values of σexp, εexp

σct composite stress resp. mean resistance force per unit area
σmed

ct , σtri
ct prediction of σct based on Ṗ and Ptri, respectively

σmed,scale
ct scaled version of σmed

ct
Sσ

ult,S
ε
ult stress, strain scaling factor

p(θ) spatial p.d.f of θ

pc(θ.l) joint p.d.f of θ and le in C
pc(θ) p.d.f of θ in C
ple (l) p.d.f of le in C
λ, λc mean of fibres per unit volume, per unit area in C
β anisotropy parameter
β̂mom method of moments estimator of β based on 3D fibre system
β̂c,mom method of moments estimator of β based on fibres crossing C
U (I) uniform distribution on interval I
N (a, b2) normal distribution with mean a and variance b2

Iult(θ, le) interval giving the range of sult,med(θ, le) over all θ but a fixed le
s∗ult,med(θ, le) random value based on interval Iult(θ, le)
sdPult,med (θ, le) sample standard deviations of Pult,med(θ, le)
sdPel,med (θ, le) sample standard deviations of Pel,med(θ, le)
r∗Pult,med

(θ, le) random values based on sdPult,med (θ, le)
r∗Pel,med

(θ, le) random values based on sdPel,med (θ, le)

Appendix A

Table A1. Median values sel,med(θ, le), Pel,med(θ, le) (standard deviations given in brackets), sult,med(θ, le)
(minimum and maximum values given in brackets), Pult,med(θ, le) (standard deviations given in
brackets), stot,med(θ, le). No values for sdPel,med and sdPult,med were determined for the combination
(θ, le) = (80◦, l f /6), as only one single-fibre pull-out curve could be observed.

(θ, le)
sel,med Pel,med sult,med Pult,med stot,med
[mm] [N] [mm] [N] [mm]

(0◦, l f /2) 0.50 39.67 (32.73) 0.97 (0.76, 1.77) 47.52 (27.82) 5.68
(0◦, l f /3) 0.03 7.21 (18.80) 0.89 (0.69, 1.04) 53.30 ( 9.80) 4.82
(0◦, l f /6) 0.08 6.50 (13.70) 0.94 (0.46, 1.09) 23.82 (12.95) 1.82

(10◦, l f /2) 0.37 56.56 (15.69) 1.12 (0.42, 3.17) 87.52 (19.04) 5.15
(10◦, l f /3) 0.51 43.16 (10.30) 1.08 (0.93, 2.13) 52.85 (15.24) 3.82
(10◦, l f /6) 0.14 13.95 (15.16) 0.90 (0.60, 1.38) 27.62 (12.53) 2.02



Materials 2022, 15, 5085 18 of 22

Table A1. Cont.

(θ, le)
sel,med Pel,med sult,med Pult,med stot,med
[mm] [N] [mm] [N] [mm]

(20◦, l f /2) 0.43 44.70 ( 8.59) 1.12 (0.65, 1.26) 66.68 (12.66) 5.77
(20◦, l f /3) 0.06 13.30 ( 5.93) 0.91 (0.77, 1.00) 39.86 (10.06) 3.46
(20◦, l f /6) 0.25 21.00 ( 4.49) 1.10 (0.73, 1.23) 24.10 (14.07) 1.67

(30◦, l f /2) 0.23 30.80 ( 5.62) 0.99 (0.66, 1.43) 56.90 (10.71) 4.91
(30◦, l f /3) 0.37 40.00 (18.23) 1.18 (0.63, 1.42) 52.74 (10.53) 2.61
(30◦, l f /6) 0.20 23.74 ( 9.09) 0.93 (0.83, 1.06) 44.70 ( 8.77) 1.70

(40◦, l f /2) 0.52 50.75 (14.04) 1.13 (0.73, 2.72) 71.35 (14.51) 4.99
(40◦, l f /3) 0.03 11.14 ( 6.63) 1.07 (0.66, 4.13) 63.52 (22.80) 3.45
(40◦, l f /6) 0.04 6.20 ( 8.70) 0.65 (0.28, 1.01) 23.78 (11.54) 1.42

(50◦, l f /2) 0.04 11.09 (14.00) 1.57 (1.38, 1.74) 53.34 (16.30) 4.59
(50◦, l f /3) 0.07 10.00 ( 7.70) 1.30 (0.97, 1.92) 44.85 (15.97) 2.48
(50◦, l f /6) 0.06 10.00 (27.88) 0.48 (0.35, 0.76) 25.41 ( 6.46) 0.88

(60◦, l f /2) 0.10 14.20 ( 6.18) 1.40 (1.17, 1.60) 68.25 (13.00) 4.96
(60◦, l f /3) 0.06 13.50 (44.59) 1.39 (1.33, 2.96) 56.71 (50.63) 2.60
(60◦, l f /6) 0.11 14.80 ( 5.22) 0.96 (0.63, 1.01) 36.79 ( 7.57) 1.23

(70◦, l f /2) 0.07 11.90 (18.93) 1.77 (1.64, 2.07) 59.29 (10.08) 4.16
(70◦, l f /3) 0.11 8.90 ( 3.87) 1.65 (0.84, 2.19) 44.99 (12.17) 2.51
(70◦, l f /6) 0.08 8.52 ( 3.52) 0.67 (0.38, 1.50) 20.73 ( 5.80) 1.11

(80◦, l f /2) 0.06 9.50 ( 5.24) 2.39 (1.17, 3.13) 54.94 (22.78) 3.77
(80◦, l f /3) 0.53 6.50 ( 2.81) 0.54 (0.02, 1.31) 7.27 ( 7.05) 0.69
(80◦, l f /6) 0.00 4.54 (-) 0.13 (0.13, 0.13) 4.55 (-) 0.37

Table A2. Parameter values for Ptri(w, θ, le). No value for p1 was determined for the combination
(θ, le) = (80◦, l f /6), as no phase I could be observed.

(θ, le) p1 p2 p3 r1 r2

(0◦, l f /2) 79.34 16.30 -26.83 31.78 46.58
(0◦, l f /3) 250.41 53.42 -31.58 5.67 49.68
(0◦, l f /6) 80.25 20.15 -35.99 4.87 21.61
(10◦, l f /2) 152.59 41.31 -57.37 41.25 94.03
(10◦, l f /3) 84.04 17.14 -41.81 34.35 56.04
(10◦, l f /6) 103.13 17.84 -34.24 11.54 24.07
(20◦, l f /2) 105.09 31.73 -40.63 31.20 71.22
(20◦, l f /3) 207.58 31.36 -29.84 11.29 37.08
(20◦, l f /6) 85.4 3.61 -58.37 20.11 29.89
(30◦, l f /2) 131.09 34.77 -35.44 22.63 56.39
(30◦, l f /3) 107.83 15.81 -66.17 34.13 63.52
(30◦, l f /6) 119.58 28.52 -74.70 18.08 39.54
(40◦, l f /2) 98.36 33.39 -48.13 33.52 77.35
(40◦, l f /3) 404.92 50.37 -54.20 9.75 67.05
(40◦, l f /6) 139.23 29.15 -30.17 4.90 10.66
(50◦, l f /2) 282.54 27.68 -49.61 10.00 75.59
(50◦, l f /3) 151.83 28.24 -69.47 8.14 63.08
(50◦, l f /6) 181.48 36.50 -41.19 7.99 -5.04
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Table A2. Cont.

(θ, le) p1 p2 p3 r1 r2

(60◦, l f /2) 136.65 41.59 -54.03 9.88 86.58
(60◦, l f /3) 242.58 32.42 -90.14 11.70 86.3
(60◦, l f /6) 133.94 25.89 -150.39 11.94 30.63
(70◦, l f /2) 175.64 27.91 -69.22 10.01 98.67
(70◦, l f /3) 83.08 23.36 -107.43 6.40 98.92
(70◦, l f /6) 109.05 20.72 -40.51 6.90 4.34
(80◦, l f /2) 152.08 19.49 -121.31 8.28 160.83
(80◦, l f /3) 12.28 122.75 -29.50 -58.49 -11.14
(80◦, l f /6) - 0.08 -4.29 4.55 -4.27

The parameters where determined as follows

p1 =
Pel,med(θ, le)
sel,med(θ, le)

(A1)

p2 =
Pult,med(θ, le)− Pel,med(θ, le)
sult,med(θ, le)− sel,med(θ, le)

(A2)

p3 =
Pult,med(θ, le)

sult,med(θ, le)− stot,med(θ, le)
, (A3)

r1 = Pel,med(θ, le)− p2 · sel,med(θ, le), (A4)

r2 = Pult,med(θ, le)− p3 · sult,med(θ, le). (A5)

Appendix B

We consider a fibre system as a realisation of a set of random line segments. The
random angular deviation between a line segment and the Z-axis is described by its
inclination angle θ. A random inclination angle in space is denoted by Θ and a random
inclination angle of a fibre intersecting the (X,Y)-plane by Θc. Θ follows a distribution
with density

p(θ) =
β sin(θ)

(1 + (β2 − 1) cos2(θ))
3
2

, θ ∈
[
0,

π

2

]
, β > 0. (A6)

Then, Θc follows a distribution with density [49]

pc(θ) = (1 + β)p(θ) cos(θ), θ ∈
[
0,

π

2

]
, β > 0. (A7)

The difference between p(θ) and pc(θ) arises from the fact that pc(θ) only considers
the fibres intersecting the (X,Y)-plane, whereas p(θ) considers every fibre of the fibre
system [49]. In a realisation with N line segments, we denote a sample of spatial inclination
angles by θ1, . . . , θN and a sample of inclination angles of fibres intersecting the (X,Y)-plane
by θc,1, . . . , θc,M, M ≤ N.

Method of Moments Estimators β̂mom, β̂c,mom for β

The method of moments (mom) is based on the approximation of sample moments
with theoretical moments (via the law of large numbers (LLN)). If the theoretical moments
are functions of a parameter, the sample moments are functions of the parameter’s estimate.
Here, the parameter of interest is the anisotropy parameter β. Assume that Θ1, . . . , ΘN i.i.d.
with density p such that for suitable function g we have E(Θk

i ) = gk(β) < ∞. Then an
estimator β̂mom can be obtained as solution of Θk N = 1

N ∑N
i=1 Θk

i = gk(β̂mom). We apply the
cosine to the angles in the following. Thus, cos(Θ1), . . . , cos(ΘN) are i.i.d. with



Materials 2022, 15, 5085 20 of 22

E(cos(Θi)) =

π
2∫

0

cos(θ)p(θ) dθ =
1

1 + β
(A8)

and g(β) = 1
1+β , β > 0. Therefore,

β̂mom =
1

cos(Θ)N
− 1 (A9)

with cos(Θ)N = 1
N ∑N

i=1 cos(Θi).
For Θc,1, . . . , Θc,M i.i.d. it follows analogously

E(cos2(Θc,i)) =

π
2∫

0

cos2(θ)pc(θ) dθ = (1 + β)

π
2∫

0

cos3(θ)p(θ) dθ =
1

1 + β
(A10)

Therefore,

β̂c,mom =
1

cos2(Θc)M

− 1. (A11)
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